Exercise 46

Show that the sum of the x - and y-intercepts of any tangent line to the curve $\sqrt{x}+\sqrt{y}=\sqrt{c}$ is equal to c.

Solution

Start by differentiating both sides of the given equation with respect to x.

$$
\frac{d}{d x}(\sqrt{x}+\sqrt{y})=\frac{d}{d x}(\sqrt{c})
$$

Use the chain rule to differentiate $y=y(x)$.

$$
\frac{1}{2} x^{-1 / 2}+\frac{1}{2} y^{-1 / 2} \frac{d y}{d x}=0
$$

Solve for $d y / d x$.

$$
\begin{aligned}
\frac{1}{2} y^{-1 / 2} \frac{d y}{d x} & =-\frac{1}{2} x^{-1 / 2} \\
\frac{d y}{d x} & =-\frac{y^{1 / 2}}{x^{1 / 2}} \\
\frac{d y}{d x} & =-\sqrt{\frac{y}{x}}
\end{aligned}
$$

The slope of the tangent line at the point $\left(x_{0}, y_{0}\right)$ is then

$$
m=-\sqrt{\frac{y_{0}}{x_{0}}} .
$$

Use the point-slope formula to obtain the equation of the tangent line.

$$
\begin{gather*}
y-y_{0}=m\left(x-x_{0}\right) \\
y-y_{0}=-\sqrt{\frac{y_{0}}{x_{0}}}\left(x-x_{0}\right) \tag{1}
\end{gather*}
$$

To determine the y-intercept, set $x=0$ in equation (1) and solve for y.

$$
\begin{gathered}
y-y_{0}=-\sqrt{\frac{y_{0}}{x_{0}}}\left(-x_{0}\right) \\
y-y_{0}=\sqrt{x_{0}} \sqrt{y_{0}} \\
y=\sqrt{x_{0}} \sqrt{y_{0}}+y_{0}
\end{gathered}
$$

To determine the x-intercept, set $y=0$ in equation (1) and solve for x.

$$
\begin{gathered}
-y_{0}=-\sqrt{\frac{y_{0}}{x_{0}}}\left(x-x_{0}\right) \\
y_{0} \sqrt{\frac{x_{0}}{y_{0}}}=x-x_{0} \\
\sqrt{x_{0}} \sqrt{y_{0}}+x_{0}=x
\end{gathered}
$$

Now add the intercepts together.

$$
\begin{gathered}
\left(\sqrt{x_{0}} \sqrt{y_{0}}+x_{0}\right)+\left(\sqrt{x_{0}} \sqrt{y_{0}}+y_{0}\right) \\
x_{0}+2 \sqrt{x_{0}} \sqrt{y_{0}}+y_{0} \\
\left(\sqrt{x_{0}}+\sqrt{y_{0}}\right)^{2} \\
(\sqrt{c})^{2} \\
c
\end{gathered}
$$

The square roots add to \sqrt{c} because $\left(x_{0}, y_{0}\right)$ lies on the curve.

